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Introduction

§1 Introduction

@ In 1987 [Brennan-Herzog-Ulrich]
-+ Maximally Generated Maximal Cohen-Macaulay modules

@ In 2014 [Goto-Ozeki-Takahashi-Watanabe-Yoshida]
- Ulrich ideals and modules

@ Recently [Goto-Ozeki- Takahashi-Watanabe-Yoshida]
.-+ Ulrich ideals/modules over two-dimensional rational singularities
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Introduction

§1 Introduction

@ In 1987 [Brennan-Herzog-Ulrich]
-+ Maximally Generated Maximal Cohen-Macaulay modules

@ In 2014 [Goto-Ozeki-Takahashi-Watanabe-Yoshida]
- Ulrich ideals and modules

@ Recently [Goto-Ozeki- Takahashi-Watanabe-Yoshida]
.-+ Ulrich ideals/modules over two-dimensional rational singularities

Question 1.1

How many Ulrich ideals are contained in a given Cohen-Macaulay local
ring of dimension one?
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Introduction

Notation

In what follows, unless other specified, we assume

@ (R,m) a Cohen-Macaulay local ring, dim R =1
@ I an m-primary ideal of R, n = ugr(I)

© I contains a parameter ideal @ = (a) of R as a reduction

©Q ¢e(R) the multiplicity of R
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Survey on Ulrich ideals

§2 Survey on Ulrich ideals

Based on the paper
[Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014] Ulrich ideals and modules

Definition 2.1
We say that [ is an Ulrich ideal of R, if

(1) I2Q, I*?=QI, and

(2) I/I?is R/I-free.
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Survey on Ulrich ideals

§2 Survey on Ulrich ideals

Based on the paper
[Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014] Ulrich ideals and modules

Definition 2.1
We say that [ is an Ulrich ideal of R, if

(1) I2Q, I*?=QI, and
(2) I/I?is R/I-free.

Notice that
@ (1) < gr;(R) is Cohen-Macaulay ring with a(gr;(R)) = 0.

@ Suppose that I = m. Then
(1) <= Ris not a RLR, pr(m) =e(R).
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Survey on Ulrich ideals

Example 2.2

Let A be a Cohen-Macaulay local ring with dim R = 1, F' a finitely
generated free A-module. Let

R=AxF, (a,z)(by):= (ab,ay + bx)
be the idealization of F' over A. We put
I'=pxF, Q=pR,

where p is a parameter ideal of A. Then [ is an Ulrich ideal of R with
ur(l) =ranky F + 1.
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Survey on Ulrich ideals

Let X be the set of Ulrich ideals of R.
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Survey on Ulrich ideals

Let X be the set of Ulrich ideals of R.

Theorem 2.3

Suppose that R is of finite CM-representation type. Then Xg is a finite
set.
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Survey on Ulrich ideals

Let
R = E[[t*,t%, ..., t%]] CV = K[[t]]

be the numerical semigroup ring over a field k, where
0 < aj,as,...,a; € Z such that ged(ay, az,...,ap) = 1.
We define

o(f) :=max{ne€Z| f et"V}

for0#£ feV.
We set

X3, = {Ulrich ideals of R generated by monomials in t}.
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Survey on Ulrich ideals

Let
R = E[[t*,t%, ..., t%]] CV = K[[t]]

be the numerical semigroup ring over a field k, where
0 < aj,as,...,a; € Z such that ged(ay, az,...,ap) = 1.
We define

o(f) :=max{ne€Z| f et"V}

for0#£ feV.
We set

X3, = {Ulrich ideals of R generated by monomials in t}.

Theorem 2.4
The set X7, is finite.
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Survey on Ulrich ideals

We continue the researches ([GOTWY]), providing a practical method for
counting Ulrich ideals in dimension one.
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Survey on Ulrich ideals

Lemma 2.5
Suppose that I = QI. Then TFAE.

(1) I is an Ulrich ideal of R.

(2) I/Q is a free R/I-module.
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Survey on Ulrich ideals

Lemma 2.5
Suppose that I = QI. Then TFAE.

(1) I is an Ulrich ideal of R.

(2) I/Q is a free R/I-module.

Proof.

The equivalence of (1) and (2) follows from the splitting of the sequence
0—-Q/QI = I/I* - 1/Q — 0.

When this is the case, I/Q = (R/I)"~!, since Q = (a) is generated by a
part of a minimal basis of I. O
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Survey on Ulrich ideals

Let I € X'k. Look at the isomorphism
1/Q = (R/I)"".
Then we have the following. Here 1(R) = (r(Exth(R/m, R)).
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Survey on Ulrich ideals

Let I € XR. Look at the isomorphism
1/Q = (R/I)".
Then we have the following. Here r(R) = (z(ExtL(R/m, R)).
Corollary 2.6
1) Q:I=1I
(2) 0<(n—1)r(R/I) =1r(1/Q) <1(R/Q) =1(R).

Hence n < r(R) + 1.
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Survey on Ulrich ideals

Let I € XR. Look at the isomorphism
1/Q = (R/I)".
Then we have the following. Here r(R) = (z(ExtL(R/m, R)).
Corollary 2.6
1) Q:I=1I
(2) 0<(n—1)r(R/I) =1r(1/Q) <1(R/Q) =1(R).

Hence n < r(R) + 1.

Therefore, if R is a Gorsenstein ring, then R/I is Gorenstein, n = 2 and [
is a good ideal in the sense of [2].
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Survey on Ulrich ideals

Let [ € Xp. Let
Fo: 5 FE3F 1 583 F—R/I—0

be a minimal free resolution of R/I and 3; = rankg F; (i > 0).
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Survey on Ulrich ideals

Let [ € Xp. Let
Fo: 5 FE3F 1 583 F—R/I—0

be a minimal free resolution of R/I and 3; = rankg F; (i > 0).

Theorem 2.7
(1) R/I®Rr0; =0 for Vi > 1.
(n—1)""tn (i>1),

Q)&:{l (i=0).

Hence 3; = (1) + (n—1)B;—1 for Vi > 1.

7
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Survey on Ulrich ideals

Look at the exact sequence

0—Q—1— (R/N®"D 0.
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Survey on Ulrich ideals

Look at the exact sequence

0—Q—1— (R/N®"D 0.

Corollary 2.8
A minimal free resolution of I is obtained by those of Q and (R/I)®("~1.

Corollary 2.9
Syzi ! (R/T) = [Syzp(R/D]*"~Y for all i > 1. Hence

Syzig ' (R/T) = Syzip(R/I)

for all i > 1, if R is a Gorenstein local ring.
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Survey on Ulrich ideals

Theorem 2.10
Let I,J € Xg. Then I = J if and only if

Syzr(R/I) = Syz(R/J)

for some i > 0.
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Survey on Ulrich ideals

Example 2.11

Let I € Xr. Suppose that R is a Gorenstein local ring with dim R = 1.
Then pr(l) = 2. We write

I=(a,z) (z€R)

where Q = (a) is a reduction of I. Then 2% = ay for some y € I, since

I2 = al. Then
—r -y
a x

-z —y
. ) 2((1 at) 2((1 :U) .
Fo: .- =R — R — R R— R/I —0.

—
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Gorenstein case

§3 The Gorenstein case

In this section, we assume that R is a Gorenstein ring.

Definition 3.1 ([2])
We say that [ is a good ideal of R, if

(1) I? =QI and
(2) Q:I=1
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Gorenstein case

§3 The Gorenstein case

In this section, we assume that R is a Gorenstein ring.

Definition 3.1 ([2])
We say that [ is a good ideal of R, if

(1) I? =QI and
(2) Q:I=1

Notice that

@ [ is good <= gr;(R) is Gorenstein with a(gr;(R)) = 0.
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Gorenstein case

Setting 3.2

Let Vi be the set of intermediate rings R C A C Q(R) such that A is a
finitely generated R-module and put

Yr=A{I|1is a good ideal of R},

Zr ={A € Vr | Ais a Gorenstein ring}.

Hence XR - yR and ZR - VR.
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Gorenstein case

Lemma 3.3 (Key Lemma)

There is a well-defined bijective map

¢0:Zr—>YVr, A— R:A

Therefore, R: A € X <= ur(A) =2 for A € Zp.
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Gorenstein case

Lemma 3.3 (Key Lemma)

There is a well-defined bijective map
¢0:Zr—>YVr, A— R:A

Therefore, R: A € X <= ur(A) =2 for A € Zp.

Proof.
Let A€ Zg and put J = R: A. Then J = bA for some b € J, since A is
a Gorenstein ring and J = K 4. Let ¢ = bR. Then

J?=qJ and q: J=R: A=,

so that J is a good ideal of R. If J € XR, then pur(A) = pur(J) = 2.
Suppose that ur(A) = 2. Then J/q is cyclic, since q is a minimal
reduction of J. Hence J/q = R/J, because q:J =J. Thus J € Xr. [
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Gorenstein case

Let V = R be the normalization of R.

Corollary 3.4

Suppose that V is a DVR and V' is a finitely generated R-module. Then
TFAE.

(1) e(R) =2
(2) R:V isan Ulrich ideal of R

Proof.

Let f € m such that fV =mV. Then fR is a reduction of m. Therefore
we have

e(R) = ep(R) = efp(R) = e}p(V) = Lr(V/mV) = pr(V).

Ol
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Gorenstein case

Example 3.5
Let R = k[[t3,t1]]. Then Xg = {(t*,5)}.

Proof.

Let A € Zg. We may assume that R C A C V = k][[t]]. Since R is
Gorenstein, > € A which shows k[[t3,t4,t%]] C A. Since A # V, then
A C E[[t?,#%]], so that

kI, %, 1) € A C K[, )],

Thus
A =E[[t?,t3]] = R+ Rt%.

Therefore R: A= R: t? = (t4,1%) € Xp. O

Naoki Taniguchi (Meiji University) Ulrich ideals of dimension one March 13, 2015 20 / 44



Gorenstein case

Example 3.6
Let R = k[[t*,£5,t%]]. Then Xr = {(t* — ct?,5) | c € k}. ’

Proof.
Let A € Zp such that RC A C V = k[[t]]. Then t” € A and hence

Kl 6°,¢%,¢7]) ¢ A C K[[t%, %)),
Since k[[t3,t4,t%]] is not Gorenstein, A ¢ k[[t3,*,¢%]], whence
3¢ € A such that o(§) = 2.

We may assume & = t2 + ct3 where ¢ € k. Therefore

A = K[, 3] or R[g).
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Gorenstein case

Proof. (continued)
If A= Kk[[t? t%]], then

nr(A) = lr(A/mA) =3,

so that R: A ¢ Xgr. Suppose that A = R[{]. Then e(A) =2 and
therefore A is Gorenstein. Since mA = t*V, we have

pr(A) =Lp(V/mA) —Lr(V/A) =4-2=2.

Hence R: A=R: ¢ = (t* — ct5,1%) € XR. O
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Gorenstein case

Proof. (continued)
If A= Kk[[t? t%]], then

nr(A) = lr(A/mA) =3,

so that R: A ¢ Xgr. Suppose that A = R[{]. Then e(A) =2 and
therefore A is Gorenstein. Since mA = t*V, we have

pr(A) =Lp(V/mA) —Lr(V/A) =4-2=2.

Hence R: A=R: ¢ = (t* — ct5,1%) € XR. O

Therefore
o Xp={(tt—ct5,1%) |cekt &Lk

o Af ={(t",1)}
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Gorenstein case

Example 3.7
@ Let R =K[[t3,t%]]. Then Xg = 0.

@ Let R =K[[t3,t7]]. Then Xr = {(t5 — ct",#10) | 0 # c € k}.

@ Let R = K[[t2,t2F1]] (¢ > 0). Then Xp = {(t¥, 1) | 1 <i < ¢}.
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Gorenstein case

Theorem 3.8
Let R = k[[t",t" "1 ... #?"72]] (n > 3). Then
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Gorenstein case

Proof of the case: n =2q+1 (¢ > 2)
Let ] € Xp and A = é C Q(R). Then

"V C R[] C A,
since t?" 1 is the generator of the socle of Q(R)/R. Let
C=A:V =tV (¢ >0).

Then c<n=2¢+1. We put £ ={¢4(V/A). Hence 2¢ = ¢, since A is
Gorenstein. Thus
fA(V/A) <gq.

Look at
A= A/mAD J=mz2 J?=(0).

Take £ € my so that J = (€). Then £ # 0 and 22 =0in A.
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Gorenstein case

Proof of the case: n =2g+ 1 (¢ > 2) (continue).

Hence
2 emACt"V and A= R+ R¢,

because A/mA = k + k€. Therefore 2-0(¢) > n = 2g + 1, so that
o(§) > ¢ +1.

Thus
A=R+ RE CT:=k[[t?ML,¢272 . 29t C V.

Hence A = T, because

tr(V/T) = q and L4(V/A) < q.

This is impossible. Thus X = 0. O
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Finite CM-rep. type

§4 Finite Cohen-Macaulay representation type

Let (R, m) be a one-dimensional Gorenstein complete equi-characteristic
local ring with algebraically closed residue class field k = R/m.

Suppose that R has finite CM-representation type. Then R is a simple
singularity, i.e.,
R = E[[X,Y]]/(f),
where f is one of the polynomials as follows.
(A,) X2-Yntl (n>1)
) XY~V (n>4)
(Bg) X3 -Y*
) X3 - XY3
) X3y’
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Finite CM-rep. type

Type (A,) : X2 -V (n>1)

Theorem 4.1

2)n=200{>1)- Xp={(z,y%) |1 <i< L}
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Finite CM-rep. type

Type (A,): X2 —-Y" (n>1)

Theorem 4.1

(1) n=20—1(>1,chk#2) -+ Xp={(z,v") |1 <3</}

2)n=200{>1)- Xp={(z,y%) |1 <i< L}

Proof of Theorem 4.1 (1).

Notice that

ZR—{R[ ]]1<z<£}and,uR(A):2forVA€ZR.

Therefore R: R[Z] = R: 57 = (z,9') € Xr.
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Finite CM-rep. type

Type (A,): X2 —-Y" (n>1)

Proof of Theorem 4.1 (2).
In this case (n =2¢, £ > 1),

R = K[[X, Y])/(X* = Y1) = k[, 241]).

Since |
Kz oo+ = {2 | 1 < i < 4},

we have
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Finite CM-rep. type

Type (Eq) : X3 — V4, (E;) : X3 — XV3, (Eg) : X3 — V"

Theorem 4.2

Proof of the cases (Eg), (Eg).
o (Eg) -+ R=kK[X,Y])/(X®—Y*) = k[[*,¢]].
o (Es) -+ R=k[X,Y])/(X°-Y?) = k[[t?, £]].

Remember that Xk[[t3,t4]} = {(t4,t6)} and Xk[[t3,t5ﬂ =0. Ol
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Finite CM-rep. type

Proof of the case (E;7) : X3 — XY3

Due to [Goto-Takahashi-T, 2015].

Claim

Zr = {k[[Y] @ k[[t*,£°]], K[Y]] @ k[[e]], &k +I(R)}

Sketch of proof.

Let f = X2 —Y3. Let ¢ : S = k[[X,Y]] — V = k[[t]] be the k-algebra
map such that
p(X) =15, oY) =1t

Then S/(f) = k[[t%,t3]] and we get the following diagram.
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Finite CM-rep. type

Proof of the case (E;7) : X3 — XY3

0— S/(X-f) 25 S/(X) @ S/(f) 25 S/(X, f) — 0

I

k[[Y]] & k[[t2, 7]

Let A € Zg. Consider po : R — V, (a,b) — b. We put B = py(A). Since
E[[t?,t3]] C B CV, we get

B = k[[t*,t%]] or V.
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Finite CM-rep. type

Proof of the case (E;7) : X3 — XY3

Case 1 (A is not a local ring.)
A=k[[Y]]® B.
Case 2 (A is a local ring.)
e B=V .- A2EK[Y,Z]]/(Z(Y — Z?)) =k + J(R)

@ B =Ek[[t?,t%]] --- Ais not a Gorenstein ring.

Hence
Zp = {k[[Y]] @ k[[*, )], K[[Y]] @ V. k + J(R)}.
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Finite CM-rep. type

Proof of the case (E;7) : X3 — XY3

Let A € Zp such that ugr(A) = 2. Then
A= K[[Y]] @ k[[#,£]),
so that Xr = {R: A}. Since
0— R— 8/(X)®S/(f) (=4) = 8/(X,Y®) =0,

we have A/R = S/(X,Y3). Thus R: A = (z,9°).

34 / 44
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Finite CM-rep. type

Type (D,) : X2Y — Y™ ! (n > 4)

Theorem 4.3
(1) n=20+1(£>2)
-+ Xp = {(=%y), (&, y* )}

(2) n=20(¢>2,chk #2)
- Xr ={(a%y), (@ —y Lyl +y), (e + Ty — )}

v
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Finite CM-rep. type

Question 4.4

Is there any relation between Ulrich ideals and representation theory?
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Non-Gorenstein case

§5 The non-Gorenstein case

Theorem 5.1

Let (V,n) be a Cohen-Macaulay local ring with dimV' = 1. Let

R=V[Y]/(¥") (n>2).

Then §Xr = co.
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Non-Gorenstein case

Proof of Theorem 5.1.
Suppose n =2g+ 1 (¢ > 1). Let a be a parameter for V, and

I=1,:= (a% — y,aéyq) for V¢ >0,
where y is the image of Y in R. Then
I* = (a* = y)I,
while R/(a?* —y) =2 V/(a*") and R/I = V/(a’™). Hence
lr(I/(a® = y)) = Lr(R/T) = Lne(V).
Therefore I/(a? —y) = R/I, so that I, = I € Xr. Thus #Xp = cc.

For the case n = 2q (q > 1), consider I = I, := (a’, 7).
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Non-Gorenstein case

Theorem 5.2
Suppose that R = R and R is a reduced ring. If

mRC R and R +# a RLR,

then X = {m}.
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Non-Gorenstein case

Theorem 5.2
Suppose that R = R and R is a reduced ring. If

mRC R and R +# a RLR,

then X = {m}.

Proof.

The ring R is a finitely generated R-module and mR = m. Take a € m so
that m = aR. Then m? = am and pg(m) > 1. Thus m € Xx.

Conversely, let I € Xr and choose a reduction @ = (a) of I. Then

mg C R, since g C R. Hence mI C Q. Therefore I = m, since I/Qis
R/I-free. Thus X = {m}. O
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Non-Gorenstein case

Corollary 5.3
Let n > 2 and R = k[[t",t"1, ... t?"~1]]. Then X = {m}.

Corollary 5.4

Let (S,n) be a RLR with dim S =n > 2. Let n = (X1, Xo,...,X,,) and
put

R=8/niuy(X; | #1).

Then X = {m}.
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Non-Gorenstein case

Corollary 5.5
Let K/k (K # k) be a finite extension of fields. We put

V = K[[t] and R = k[[tK]).

Then X = {tV}.
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Value semigroups

§6 Value semigroups

Let V = k[[t].

Example 6.1

(1) Let f,g € V such that o(f) = 3,0(g) = 4. We put R = k[[f, g]].
Then X = {(g, 1)}

(2) Let f,g € V such that o(f) = 3,0(g) = 5. We put R = k[[f, g]].
Then Xr = 0.

(3) Let R = E|[[fs, fe, f7, fs]], where f; € V such that o(f;) =i for
5 <Vi<8. Then Xp = 0.
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Value semigroups

Thank you very much for your attention.
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