Ulrich ideals of dimension one

Naoki Taniguchi

Meiji University

Joint work with Olgur Celikbas and Shiro Goto

Commutative algebra seminar at University of Connecticut

March 13, 2015

§1 Introduction

- In 1987 [Brennan-Herzog-Ulrich]
 - ··· Maximally Generated Maximal Cohen-Macaulay modules
- In 2014 [Goto-Ozeki-Takahashi-Watanabe-Yoshida]
 - · · · Ulrich ideals and modules
- Recently [Goto-Ozeki-Takahashi-Watanabe-Yoshida]
 - · · · Ulrich ideals/modules over two-dimensional rational singularities

Question 1.1

How many Ulrich ideals are contained in a given Cohen-Macaulay local ring of dimension one?

§1 Introduction

- In 1987 [Brennan-Herzog-Ulrich]
 - ··· Maximally Generated Maximal Cohen-Macaulay modules
- In 2014 [Goto-Ozeki-Takahashi-Watanabe-Yoshida]
 - · · · Ulrich ideals and modules
- Recently [Goto-Ozeki-Takahashi-Watanabe-Yoshida]
 - · · · Ulrich ideals/modules over two-dimensional rational singularities

Question 1.1

How many Ulrich ideals are contained in a given Cohen-Macaulay local ring of dimension one?

Contents

- Introduction
- Survey on Ulrich ideals
- The Gorenstein case
- Finite Cohen-Macaulay representation type
- The non-Gorenstein case
- Value semigroups

Notation

In what follows, unless other specified, we assume

- **1** (R, \mathfrak{m}) a Cohen-Macaulay local ring, $\dim R = 1$
- ② I an \mathfrak{m} -primary ideal of R, $n=\mu_R(I)$
- $lacksquare{1}{3}$ I contains a parameter ideal Q=(a) of R as a reduction
- \bullet e(R) the multiplicity of R

§2 Survey on Ulrich ideals

Based on the paper

[Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014] Ulrich ideals and modules

Definition 2.1

We say that I is <u>an Ulrich ideal of R</u>, if

- (1) $I \supseteq Q$, $I^2 = QI$, and
- (2) I/I^2 is R/I-free.

Notice that

- $(1) \iff \operatorname{gr}_I(R)$ is Cohen-Macaulay ring with $\operatorname{a}(\operatorname{gr}_I(R)) = 0$.
- Suppose that $I=\mathfrak{m}$. Ther
 - $(1) \iff R \text{ is not a RLR, } \mu_R(\mathfrak{m}) = e(R)$

§2 Survey on Ulrich ideals

Based on the paper

[Goto-Ozeki-Takahashi-Watanabe-Yoshida, 2014] Ulrich ideals and modules

Definition 2.1

We say that I is <u>an Ulrich ideal of R</u>, if

- (1) $I \supseteq Q$, $I^2 = QI$, and
- (2) I/I^2 is R/I-free.

Notice that

- $(1) \Longleftrightarrow \operatorname{gr}_I(R)$ is Cohen-Macaulay ring with $\operatorname{a}(\operatorname{gr}_I(R)) = 0$.
- Suppose that $I = \mathfrak{m}$. Then (1) $\iff R$ is not a RLR, $\mu_R(\mathfrak{m}) = e(R)$.

Example 2.2

Let A be a Cohen-Macaulay local ring with $\dim R = 1$, F a finitely generated free A-module. Let

$$R = A \ltimes F$$
, $(a, x)(b, y) := (ab, ay + bx)$

be the idealization of F over A. We put

$$I = \mathfrak{p} \times F, \quad Q = \mathfrak{p}R,$$

where $\mathfrak p$ is a parameter ideal of A. Then I is an Ulrich ideal of R with $\mu_R(I) = \operatorname{rank}_A F + 1$.

Let \mathcal{X}_R be the set of Ulrich ideals of R.

Theorem 2.3

Suppose that R is of finite CM-representation type. Then \mathcal{X}_R is a finite set

Let \mathcal{X}_R be the set of Ulrich ideals of R.

Theorem 2.3

Suppose that R is of finite CM-representation type. Then \mathcal{X}_R is a finite set.

Let

$$R = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq V = k[[t]]$$

be the numerical semigroup ring over a field k, where $0 < a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$ such that $\gcd(a_1, a_2, \ldots, a_\ell) = 1$. We define

$$o(f) := \max\{n \in \mathbb{Z} \mid f \in t^n V\}$$

for $0 \neq f \in V$.

We set

 $\mathcal{X}_{R}^{g} = \{ \text{Ulrich ideals of } R \text{ generated by } \underline{\text{monomials}} \text{ in } t \}.$

Theorem 2.4

The set \mathcal{X}_{R}^{g} is finite

Let

$$R = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subseteq V = k[[t]]$$

be the numerical semigroup ring over a field k, where $0 < a_1, a_2, \ldots, a_\ell \in \mathbb{Z}$ such that $\gcd(a_1, a_2, \ldots, a_\ell) = 1$. We define

$$o(f) := \max\{n \in \mathbb{Z} \mid f \in t^n V\}$$

for $0 \neq f \in V$.

We set

$$\mathcal{X}_{R}^{g} = \{ \text{Ulrich ideals of } R \text{ generated by } \underline{\text{monomials}} \text{ in } t \}.$$

Theorem 2.4

The set \mathcal{X}_{R}^{g} is finite.

We continue the researches ([GOTWY]), providing a practical method for counting Ulrich ideals in dimension one.

Lemma 2.5

Suppose that $I^2 = QI$. Then TFAE.

- (1) I is an Ulrich ideal of R.
- (2) I/Q is a free R/I-module.

Proof

The equivalence of (1) and (2) follows from the splitting of the sequence

$$0 \to Q/QI \to I/I^2 \to I/Q \to 0.$$

When this is the case, $I/Q\cong (R/I)^{n-1}$, since Q=(a) is generated by a part of a minimal basis of I.

4 0 1 4 0 1 4 1 1 4 1 1 1 1

Lemma 2.5

Suppose that $I^2 = QI$. Then TFAE.

- (1) I is an Ulrich ideal of R.
- (2) I/Q is a free R/I-module.

Proof.

The equivalence of (1) and (2) follows from the splitting of the sequence

$$0 \to Q/QI \to I/I^2 \to I/Q \to 0.$$

When this is the case, $I/Q \cong (R/I)^{n-1}$, since Q = (a) is generated by a part of a minimal basis of I.

4 0 1 4 0 1 4 2 1 4 2 1 2 2

Let $I \in \mathcal{X}_R$. Look at the isomorphism

$$I/Q \cong (R/I)^{n-1}$$
.

Then we have the following. Here $r(R) = \ell_R(\operatorname{Ext}^1_R(R/\mathfrak{m}, R))$.

Corollary 2.6

(1)
$$Q: I = I$$
.

(2)
$$0 < (n-1) \cdot r(R/I) = r_R(I/Q) \le r(R/Q) = r(R)$$

Hence $n \leq \operatorname{r}(R) + 1$.

Therefore, if R is a Gorsenstein ring, then R/I is Gorenstein, n=2 and I is a good ideal in the sense of [2].

Let $I \in \mathcal{X}_R$. Look at the isomorphism

$$I/Q \cong (R/I)^{n-1}$$
.

Then we have the following. Here $r(R) = \ell_R(\operatorname{Ext}^1_R(R/\mathfrak{m}, R))$.

Corollary 2.6

- (1) Q: I = I.
- (2) $0 < (n-1) \cdot r(R/I) = r_R(I/Q) \le r(R/Q) = r(R)$.

Hence $n \leq r(R) + 1$.

Therefore, if R is a Gorsenstein ring, then R/I is Gorenstein, n=2 and I is a good ideal in the sense of [2].

Let $I \in \mathcal{X}_R$. Look at the isomorphism

$$I/Q \cong (R/I)^{n-1}$$
.

Then we have the following. Here $r(R) = \ell_R(\operatorname{Ext}^1_R(R/\mathfrak{m}, R))$.

Corollary 2.6

- (1) Q: I = I.
- (2) $0 < (n-1) \cdot r(R/I) = r_R(I/Q) \le r(R/Q) = r(R)$.

Hence $n \leq r(R) + 1$.

Therefore, if R is a Gorsenstein ring, then R/I is Gorenstein, n=2 and I is a good ideal in the sense of [2].

Let $I \in \mathcal{X}_R$. Let

$$\mathbb{F}_{\bullet}: \cdots \to F_i \stackrel{\partial_i}{\to} F_{i-1} \to \cdots \to F_1 \stackrel{\partial_1}{\to} F_0 \to R/I \to 0$$

be a minimal free resolution of R/I and $\beta_i = \operatorname{rank}_R F_i$ $(i \ge 0)$.

Theorem 2.7

(1)
$$R/I \otimes_R \partial_i = 0$$
 for $\forall i \geq 1$.

(2)
$$\beta_i = \begin{cases} (n-1)^{i-1} \cdot n & (i \ge 1), \\ 1 & (i = 0). \end{cases}$$

Hence
$$\beta_i = \binom{1}{i} + (n-1)\beta_{i-1}$$
 for $\forall i \geq 1$.

Let $I \in \mathcal{X}_R$. Let

$$\mathbb{F}_{\bullet}: \cdots \to F_i \stackrel{\partial_i}{\to} F_{i-1} \to \cdots \to F_1 \stackrel{\partial_1}{\to} F_0 \to R/I \to 0$$

be a minimal free resolution of R/I and $\beta_i = \operatorname{rank}_R F_i$ $(i \ge 0)$.

Theorem 2.7

(1)
$$R/I \otimes_R \partial_i = 0$$
 for $\forall i \geq 1$.

(2)
$$\beta_i = \begin{cases} (n-1)^{i-1} \cdot n & (i \ge 1), \\ 1 & (i = 0). \end{cases}$$

Hence
$$\beta_i = \binom{1}{i} + (n-1)\beta_{i-1}$$
 for $\forall i \geq 1$.

Look at the exact sequence

$$0 \to Q \to I \to (R/I)^{\oplus (n-1)} \to 0.$$

Corollary 2.8

A minimal free resolution of I is obtained by those of Q and $(R/I)^{\oplus (n-1)}$

Corollary 2.9

$$\operatorname{Syz}_R^{i+1}(R/I) \cong [\operatorname{Syz}_R^i(R/I)]^{\oplus (n-1)}$$
 for all $i \geq 1$. Hence

$$\operatorname{Syz}_R^{i+1}(R/I) \cong \operatorname{Syz}_R^i(R/I)$$

for all $i \geq 1$, if R is a Gorenstein local ring

Look at the exact sequence

$$0 \to Q \to I \to (R/I)^{\oplus (n-1)} \to 0.$$

Corollary 2.8

A minimal free resolution of I is obtained by those of Q and $(R/I)^{\oplus (n-1)}$.

Corollary 2.9

$$\operatorname{Syz}_R^{i+1}(R/I) \cong [\operatorname{Syz}_R^i(R/I)]^{\oplus (n-1)}$$
 for all $i \geq 1$. Hence

$$\operatorname{Syz}_R^{i+1}(R/I) \cong \operatorname{Syz}_R^i(R/I)$$

for all i > 1, if R is a Gorenstein local ring.

40 > 40 > 42 > 42 > 2 > 900

Theorem 2.10

Let $I, J \in \mathcal{X}_R$. Then I = J if and only if

$$\operatorname{Syz}_R^i(R/I) \cong \operatorname{Syz}_R^i(R/J)$$

for some i > 0.

Example 2.11

Let $I \in \mathcal{X}_R$. Suppose that R is a Gorenstein local ring with $\dim R = 1$. Then $\mu_R(I) = 2$. We write

$$I = (a, x) \ (x \in R)$$

where Q=(a) is a reduction of I. Then $x^2=ay$ for some $y\in I$, since $I^2=aI$. Then

$$\mathbb{F}_{\bullet}: \cdots \to R^{2} \xrightarrow{\begin{pmatrix} -x & -y \\ \mathbf{a} & x \end{pmatrix}} R^{2} \xrightarrow{\begin{pmatrix} -x & -y \\ \mathbf{a} & x \end{pmatrix}} R^{2} \xrightarrow{\begin{pmatrix} \mathbf{a} & x \end{pmatrix}} R \xrightarrow{\varepsilon} R/I \to 0.$$

§3 The Gorenstein case

In this section, we assume that R is a Gorenstein ring.

Definition 3.1 ([2])

We say that I is <u>a good ideal of R</u>, if

- (1) $I^2 = QI$ and
- (2) Q: I = I.

Notice that

• I is good $\iff \operatorname{gr}_I(R)$ is Gorenstein with $\operatorname{a}(\operatorname{gr}_I(R)) = 0$.

§3 The Gorenstein case

In this section, we assume that R is a Gorenstein ring.

Definition 3.1 ([2])

We say that I is a good ideal of R, if

- (1) $I^2 = QI$ and
- (2) Q: I = I.

Notice that

• I is good \iff $\operatorname{gr}_I(R)$ is Gorenstein with $\operatorname{a}(\operatorname{gr}_I(R))=0$.

Setting 3.2

Let \mathcal{V}_R be the set of intermediate rings $R \subsetneq A \subseteq \mathrm{Q}(R)$ such that A is a finitely generated R-module and put

$$\mathcal{Y}_R = \{I \mid I \text{ is a good ideal of } R\},$$

$$\mathcal{Z}_R = \{ A \in \mathcal{V}_R \mid A \text{ is a Gorenstein ring} \}.$$

Hence $\mathcal{X}_R \subseteq \mathcal{Y}_R$ and $\mathcal{Z}_R \subseteq \mathcal{V}_R$.

Lemma 3.3 (Key Lemma)

There is a well-defined bijective map

$$\varphi: \mathcal{Z}_R \to \mathcal{Y}_R, \ A \mapsto R: A.$$

Therefore, $R: A \in \mathcal{X}_R \iff \mu_R(A) = 2$ for $A \in \mathcal{Z}_R$.

Proof

Let $A\in\mathcal{Z}_R$ and put J=R:A. Then J=bA for some $b\in J$, since A is a Gorenstein ring and $J\cong \mathrm{K}_A.$ Let $\mathfrak{q}=bR.$ Then

$$J^2 = \mathfrak{q}J$$
 and $\mathfrak{q}: J = R: A = J$,

so that J is a good ideal of R. If $J \in \mathcal{X}_R$, then $\mu_R(A) = \mu_R(J) = 2$. Suppose that $\mu_R(A) = 2$. Then J/\mathfrak{q} is cyclic, since \mathfrak{q} is a minimal reduction of J. Hence $J/\mathfrak{q} \cong R/J$, because $\mathfrak{q}: J = J$. Thus $J \in \mathcal{X}_R$.

Lemma 3.3 (Key Lemma)

There is a well-defined bijective map

$$\varphi: \mathcal{Z}_R \to \mathcal{Y}_R, \quad A \mapsto R: A.$$

Therefore, $R: A \in \mathcal{X}_R \iff \mu_R(A) = 2$ for $A \in \mathcal{Z}_R$.

Proof.

Let $A \in \mathcal{Z}_R$ and put J = R : A. Then J = bA for some $b \in J$, since A is a Gorenstein ring and $J \cong K_A$. Let $\mathfrak{q} = bR$. Then

$$J^2 = \mathfrak{q}J$$
 and $\mathfrak{q}: J = R: A = J$,

so that J is a good ideal of R. If $J \in \mathcal{X}_R$, then $\mu_R(A) = \mu_R(J) = 2$. Suppose that $\mu_R(A) = 2$. Then J/\mathfrak{q} is cyclic, since \mathfrak{q} is a minimal reduction of J. Hence $J/\mathfrak{q} \cong R/J$, because $\mathfrak{q}: J = J$. Thus $J \in \mathcal{X}_R$.

Let $V = \overline{R}$ be the normalization of R.

Corollary 3.4

Suppose that V is a DVR and V is a finitely generated R-module. Then TFAE.

- (1) e(R) = 2
- (2) R:V is an Ulrich ideal of R

Proof.

Let $f \in \mathfrak{m}$ such that $fV = \mathfrak{m}V$. Then fR is a reduction of \mathfrak{m} . Therefore we have

$$e(R) = e_{\mathfrak{m}}^{0}(R) = e_{fR}^{0}(R) = e_{fR}^{0}(V) = \ell_{R}(V/\mathfrak{m}V) = \mu_{R}(V).$$

Example 3.5

Let $R = k[[t^3, t^4]]$. Then $\mathcal{X}_R = \{(t^4, t^6)\}$.

Proof.

Let $A\in\mathcal{Z}_R$. We may assume that $R\subsetneq A\subsetneq V=k[[t]]$. Since R is Gorenstein, $t^5\in A$ which shows $k[[t^3,t^4,t^5]]\subsetneq A$. Since $A\neq V$, then $A\subseteq k[[t^2,t^3]]$, so that

$$k[[t^3, t^4, t^5]] \subsetneq A \subseteq k[[t^2, t^3]].$$

Thus

$$A = k[[t^2, t^3]] = R + Rt^2.$$

Therefore $R: A = R: t^2 = (t^4, t^6) \in \mathcal{X}_R$.

Example 3.6

Let $R = k[[t^4, t^5, t^6]]$. Then $\mathcal{X}_R = \{(t^4 - ct^5, t^6) \mid c \in k\}$.

Proof.

Let $A \in \mathcal{Z}_R$ such that $R \subsetneq A \subsetneq V = k[[t]]$. Then $t^7 \in A$ and hence

$$k[[t^4, t^5, t^6, t^7]] \subsetneq A \subseteq k[[t^2, t^3]].$$

Since $k[[t^3,t^4,t^5]]$ is not Gorenstein, $A \nsubseteq k[[t^3,t^4,t^5]]$, whence

$$\exists \ \xi \in A \ \text{ such that } \ \mathrm{o}(\xi) = 2.$$

We may assume $\xi = t^2 + ct^3$ where $c \in k$. Therefore

$$A = k[[t^2, t^3]]$$
 or $R[\xi]$.

- ◀ □ ▶ ◀ @ ▶ ◀ 돌 ▶ 《 돌 · 씨 역 (

Proof. (continued)

If $A = k[[t^2, t^3]]$, then

$$\mu_R(A) = \ell_R(A/\mathfrak{m}A) = 3,$$

so that $R: A \notin \mathcal{X}_R$. Suppose that $A = R[\xi]$. Then e(A) = 2 and therefore A is Gorenstein. Since $\mathfrak{m}A = t^4V$, we have

$$\mu_R(A) = \ell_R(V/\mathfrak{m}A) - \ell_R(V/A) = 4 - 2 = 2.$$

Hence
$$R: A = R: \xi = (t^4 - ct^5, t^6) \in \mathcal{X}_R$$
.

Therefore

•
$$\mathcal{X}_R = \{(t^4 - ct^5, t^6) \mid c \in k\} \stackrel{\text{1:1}}{\longleftrightarrow} \mathcal{X}_R$$

$$\mathcal{X}_{D}^{g} = \{(t^4, t^6)\}$$

Proof. (continued)

If $A = k[[t^2, t^3]]$, then

$$\mu_R(A) = \ell_R(A/\mathfrak{m}A) = 3,$$

so that $R: A \notin \mathcal{X}_R$. Suppose that $A = R[\xi]$. Then e(A) = 2 and therefore A is Gorenstein. Since $\mathfrak{m}A = t^4V$, we have

$$\mu_R(A) = \ell_R(V/\mathfrak{m}A) - \ell_R(V/A) = 4 - 2 = 2.$$

Hence
$$R: A = R: \xi = (t^4 - ct^5, t^6) \in \mathcal{X}_R$$
.

Therefore

•
$$\mathcal{X}_R = \{(t^4 - ct^5, t^6) \mid c \in k\} \stackrel{1:1}{\longleftrightarrow} k$$

•
$$\mathcal{X}_{R}^{g} = \{(t^4, t^6)\}$$

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Example 3.7

- Let $R = k[[t^3, t^5]]$. Then $\mathcal{X}_R = \emptyset$.
- Let $R = k[[t^3, t^7]]$. Then $\mathcal{X}_R = \{(t^6 ct^7, t^{10}) \mid 0 \neq c \in k\}$.
- Let $R = k[[t^2, t^{2\ell+1}]]$ $(\ell > 0)$. Then $\mathcal{X}_R = \{(t^{2i}, t^{2\ell+1}) \mid 1 \le i \le \ell\}$.

Theorem 3.8

Let
$$R = k[[t^n, t^{n+1}, \dots, t^{2n-2}]] \ (n \ge 3)$$
. Then

$$\mathcal{X}_{R} = \begin{cases} \{(t^{4}, t^{6})\} & (n = 3), \\ \{(t^{4} - ct^{5}, t^{6}) \mid c \in k\} & (n = 4), \\ \emptyset & (n \ge 5). \end{cases}$$

Proof of the case: $n = 2q + 1 \ (q \ge 2)$

Let $I \in \mathcal{X}_R$ and $A = \frac{I}{a} \subseteq Q(R)$. Then

$$t^n V \subseteq k[[t^n, t^{n+1}, \dots, t^{2n-1}]] \subseteq A,$$

since t^{2n-1} is the generator of the socle of Q(R)/R. Let

$$\mathcal{C} := A : V = t^c V \ (c \ge 0).$$

Then $c \le n = 2q + 1$. We put $\ell = \ell_A(V/A)$. Hence $2\ell = c$, since A is Gorenstein. Thus

$$\ell_A(V/A) \le q$$
.

Look at

$$\overline{A} := A/\mathfrak{m}A \supseteq J := \mathfrak{m}_{\overline{A}} \supseteq J^2 = (0).$$

Take $\xi \in \mathfrak{m}_A$ so that $J = (\overline{\xi})$. Then $\overline{\xi} \neq 0$ and $\overline{\xi}^2 = 0$ in \overline{A} .

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>

Proof of the case: n = 2q + 1 $(q \ge 2)$ (continue).

Hence

$$\xi^2 \in \mathfrak{m}A \subseteq t^nV$$
 and $A = R + R\xi$,

because $A/\mathfrak{m}A = k + k\overline{\xi}$. Therefore $2 \cdot o(\xi) \geq n = 2q + 1$, so that

$$o(\xi) \ge q + 1.$$

Thus

$$A = R + R\xi \subseteq T := k[[t^{q+1}, t^{q+2}, \dots, t^{2q+1}]] \subseteq V.$$

Hence A = T, because

$$\ell_R(V/T) = q$$
 and $\ell_A(V/A) \le q$.

This is impossible. Thus $\mathcal{X}_R = \emptyset$.

7 B C 7 B C 7 B C 7 B C 8

§4 Finite Cohen-Macaulay representation type

Let (R, \mathfrak{m}) be a one-dimensional Gorenstein complete equi-characteristic local ring with algebraically closed residue class field $k = R/\mathfrak{m}$.

Suppose that R has finite CM-representation type. Then R is a simple singularity, i.e.,

$$R = k[[X, Y]]/(f),$$

where f is one of the polynomials as follows.

$$(A_n) \quad X^2 - Y^{n+1} \quad (n \ge 1)$$

$$(D_n) \quad X^2Y - Y^{n-1} \quad (n \ge 4)$$

$$(E_6) \quad X^3 - Y^4$$

$$(E_7)$$
 $X^3 - XY^3$

$$(E_8) \quad X^3 - Y^5$$

Type $(A_n): X^2 - Y^{n+1} \ (n > 1)$

Theorem 4.1

(1)
$$n = 2\ell - 1 \ (\ell \ge 1, \operatorname{ch} k \ne 2) \cdots \mathcal{X}_R = \{(x, y^i) \mid 1 \le i \le \ell\}.$$

(2)
$$n = 2\ell \ (\ell \ge 1) \cdots \mathcal{X}_R = \{(x, y^i) \mid 1 \le i \le \ell\}.$$

$$\mathcal{Z}_R = \{R[rac{x}{y^i}] \mid 1 \leq i \leq \ell\}$$
 and $\mu_R(A) = 2$ for $orall A \in \mathcal{Z}_R$.

Therefore
$$R: R[\frac{x}{y^i}] = R: \frac{x}{y^i} = (x, y^i) \in \mathcal{X}_R.$$

Type $(A_n): X^2 - Y^{n+1} \ (n \ge 1)$

Theorem 4.1

(1)
$$n = 2\ell - 1 \ (\ell \ge 1, \operatorname{ch} k \ne 2) \cdots \mathcal{X}_R = \{(x, y^i) \mid 1 \le i \le \ell\}.$$

(2)
$$n = 2\ell \ (\ell \ge 1) \cdots \mathcal{X}_R = \{(x, y^i) \mid 1 \le i \le \ell\}.$$

Proof of Theorem 4.1 (1).

Notice that

$$\mathcal{Z}_R = \{R[\frac{x}{u^i}] \mid 1 \le i \le \ell\} \text{ and } \mu_R(A) = 2 \text{ for } \forall A \in \mathcal{Z}_R.$$

Therefore $R: R[\frac{x}{y^i}] = R: \frac{x}{y^i} = (x, y^i) \in \mathcal{X}_R.$

Type $(A_n): X^2 - Y^{n+1} \ (n \ge 1)$

Proof of Theorem 4.1 (2).

In this case $(n = 2\ell, \ell \ge 1)$,

$$R = k[[X,Y]]/(X^2 - Y^{2\ell+1}) \cong k[[t^2, t^{2\ell+1}]].$$

Since

$$\mathcal{X}_{k[[t^2, t^{2\ell+1}]]} = \{ (t^{2i}, t^{2\ell+1}) \mid 1 \le i \le \ell \},\$$

we have

$$\mathcal{X}_R = \{(x, y^i) \mid 1 \le i \le \ell\}.$$

Type $({ m E}_6): X^3-Y^4$, $({ m E}_7): X^3-XY^3$, $({ m E}_8): X^3-Y^5$

Theorem 4.2

- (E_6) $\mathcal{X}_R = \{(x, y^2)\}.$
- (E_7) $\mathcal{X}_R = \{(x, y^3)\}.$
- (E_8) $\mathcal{X}_R = \emptyset$.

Proof of the cases (E_6) , (E_8) .

- $(E_6) \cdots R = k[[X,Y]]/(X^3 Y^4) \cong k[[t^3, t^4]].$
- $(E_8) \cdots R = k[[X,Y]]/(X^3 Y^5) \cong k[[t^3, t^5]].$

Remember that $\mathcal{X}_{k[[t^3,t^4]]} = \{(t^4,t^6)\}$ and $\mathcal{X}_{k[[t^3,t^5]]} = \emptyset$.

Type $(\mathrm{E}_6):X^3-Y^4$, $(\mathrm{E}_7):X^3-XY^3$, $(\mathrm{E}_8):X^3-Y^5$

Theorem 4.2

- (E₆) $\mathcal{X}_R = \{(x, y^2)\}.$
- (E_7) $\mathcal{X}_R = \{(x, y^3)\}.$
- (E_8) $\mathcal{X}_R = \emptyset$.

Proof of the cases (E_6) , (E_8) .

- $(E_6) \cdots R = k[[X,Y]]/(X^3 Y^4) \cong k[[t^3, t^4]].$
- $(E_8) \cdots R = k[[X,Y]]/(X^3 Y^5) \cong k[[t^3, t^5]].$

Remember that $\mathcal{X}_{k[[t^3,t^4]]}=\{(t^4,t^6)\}$ and $\mathcal{X}_{k[[t^3,t^5]]}=\emptyset$.

Due to [Goto-Takahashi-T, 2015].

Claim

$$\mathcal{Z}_R = \{k[[Y]] \oplus k[[t^2, t^3]], \ k[[Y]] \oplus k[[t]], \ k + J(\overline{R})\}$$

Sketch of proof.

Let $f=X^2-Y^3$. Let $\varphi:S=k[[X,Y]]\longrightarrow V=k[[t]]$ be the k-algebra map such that

$$\varphi(X) = t^3, \quad \varphi(Y) = t^2.$$

Then $S/(f) \cong k[[t^2, t^3]]$ and we get the following diagram.

- 4 □ ト 4 □ ト 4 亘 ト 4 亘 - り Q (?)

$$0 \longrightarrow S/(X \cdot f) \stackrel{\alpha}{\longrightarrow} S/(X) \oplus S/(f) \stackrel{\beta}{\longrightarrow} S/(X, f) \longrightarrow 0$$

$$\downarrow \mathbb{R}$$

$$k[[Y]] \oplus k[[t^2, t^3]]$$

$$\downarrow \bigcap$$

$$k[[Y]] \oplus V = \overline{R} \stackrel{p_2}{\longrightarrow} V$$

Let $A \in \mathcal{Z}_R$. Consider $p_2 : \overline{R} \to V$, $(a,b) \mapsto b$. We put $B = p_2(A)$. Since $k[[t^2, t^3]] \subseteq B \subseteq V$, we get

$$B = k[[t^2, t^3]]$$
 or V .

Case 1 (A is not a local ring.)

$$A = k[[Y]] \oplus B$$
.

Case 2 (A is a local ring.)

- $B = V \cdots A \cong k[[Y, Z]]/(Z(Y Z^2)) = k + J(\overline{R})$
- $B = k[[t^2, t^3]] \cdots A$ is not a Gorenstein ring.

Hence

$$\mathcal{Z}_R = \{k[[Y]] \oplus k[[t^2, t^3]], k[[Y]] \oplus V, k + J(\overline{R})\}.$$

Let $A \in \mathcal{Z}_R$ such that $\mu_R(A) = 2$. Then

$$A = k[[Y]] \oplus k[[t^2, t^3]],$$

so that $\mathcal{X}_R = \{R : A\}$. Since

$$0 \to R \to S/(X) \oplus S/(f) \ (=A) \to S/(X, Y^3) \to 0,$$

we have $A/R \cong S/(X, Y^3)$. Thus $R: A = (x, y^3)$.

Type
$$(D_n): X^2Y - Y^{n-1} \ (n \ge 4)$$

Theorem 4.3

- (1) $n = 2\ell + 1 \ (\ell \ge 2)$ $\cdots \mathcal{X}_R = \{(x^2, y), (x, y^{2\ell - 1})\}.$
- (2) $n = 2\ell \ (\ell \ge 2, \operatorname{ch} k \ne 2)$ $\cdots \mathcal{X}_R = \{(x^2, y), (x - y^{\ell-1}, y(x + y^{\ell-1})), (x + y^{\ell-1}, y(x - y^{\ell-1}))\}.$

Introduction Survey on Ulrich ideals Gorenstein case Finite CM-rep. type Non-Gorenstein case Value semigroups References

Question 4.4

Is there any relation between Ulrich ideals and representation theory?

§5 The non-Gorenstein case

Theorem 5.1

Let (V, \mathfrak{n}) be a Cohen-Macaulay local ring with $\dim V = 1$. Let

$$R = V[Y]/(Y^n) \quad (n \ge 2).$$

Then $\sharp \mathcal{X}_R = \infty$.

Proof of Theorem 5.1.

Suppose n=2q+1 $(q\geq 1).$ Let a be a parameter for V, and

$$I = I_{\ell} := (a^{2\ell} - y, a^{\ell}y^q) \quad \text{for} \quad \forall \ell > 0,$$

where y is the image of Y in R. Then

$$I^2 = (a^{2\ell} - y)I,$$

while $R/(a^{2\ell}-y)\cong V/(a^{2\ell n})$ and $R/I\cong V/(a^{\ell n})$. Hence

$$\ell_R(I/(a^{2\ell} - y)) = \ell_R(R/I) = \ell \cdot n \cdot e(V).$$

Therefore $I/(a^{2\ell}-y)\cong R/I$, so that $I_\ell=I\in\mathcal{X}_R$. Thus $\sharp\mathcal{X}_R=\infty$.

For the case $n=2q\ (q\geq 1)$, consider $I=I_\ell:=(a^\ell,y^q)$.

Theorem 5.2

Suppose that $R = \widehat{R}$ and R is a reduced ring. If

 $\mathfrak{m}\overline{R} \subseteq R$ and $R \neq a$ RLR,

then $\mathcal{X}_R = \{\mathfrak{m}\}.$

Proof

The ring \overline{R} is a finitely generated R-module and $\mathfrak{m}\overline{R}=\mathfrak{m}$. Take $a\in\mathfrak{m}$ so that $\mathfrak{m}=a\overline{R}$. Then $\mathfrak{m}^2=a\mathfrak{m}$ and $\mu_R(\mathfrak{m})>1$. Thus $\mathfrak{m}\in\mathcal{X}_R$. Conversely, let $I\in\mathcal{X}_R$ and choose a reduction Q=(a) of I. Then $\mathfrak{m}^I_a\subseteq R$, since I=10 Hence I=11. Then I=12 Hence I=13 Hence I=14 Hence I=15 Hence I=15 Hence I=16 Hence I=16 Hence I=16 Hence I=17 Hence I=18 Hence I=19 Hence I=11 Hence I=1

Theorem 5.2

Suppose that $R = \widehat{R}$ and R is a reduced ring. If

 $\mathfrak{m}\overline{R}\subseteq R$ and $R\neq a$ RLR,

then $\mathcal{X}_R = \{\mathfrak{m}\}.$

Proof.

The ring \overline{R} is a finitely generated R-module and $\mathfrak{m}\overline{R}=\mathfrak{m}$. Take $a\in\mathfrak{m}$ so that $\mathfrak{m}=a\overline{R}$. Then $\mathfrak{m}^2=a\mathfrak{m}$ and $\mu_R(\mathfrak{m})>1$. Thus $\mathfrak{m}\in\mathcal{X}_R$. Conversely, let $I\in\mathcal{X}_R$ and choose a reduction Q=(a) of I. Then $\mathfrak{m}^{\underline{I}}_{a}\subseteq R$, since $\frac{I}{a}\subseteq \overline{R}$. Hence $\mathfrak{m} I\subseteq Q$. Therefore $I=\mathfrak{m}$, since I/Q is R/I-free. Thus $\mathcal{X}_R=\{\mathfrak{m}\}$.

Corollary 5.3

Let $n \geq 2$ and $R = k[[t^n, t^{n+1}, \dots, t^{2n-1}]]$. Then $\mathcal{X}_R = \{\mathfrak{m}\}$.

Corollary 5.4

Let (S, \mathfrak{n}) be a RLR with $\dim S = n \geq 2$. Let $\mathfrak{n} = (X_1, X_2, \dots, X_n)$ and put

$$R = S/\cap_{i=1}^{n} (X_j \mid j \neq i).$$

Then $\mathcal{X}_R = \{\mathfrak{m}\}.$

Corollary 5.5

Let K/k $(K \neq k)$ be a finite extension of fields. We put

$$V = K[[t]]$$
 and $R = k[[tK]]$.

Then
$$\mathcal{X}_R = \{tV\}$$
.

§6 Value semigroups

Let V = k[[t]].

Example 6.1

- (1) Let $f,g \in V$ such that o(f)=3, o(g)=4. We put R=k[[f,g]]. Then $\mathcal{X}_R=\{(g,f^2)\}$.
- (2) Let $f,g\in V$ such that $\mathrm{o}(f)=3,\mathrm{o}(g)=5.$ We put R=k[[f,g]]. Then $\mathcal{X}_R=\emptyset.$
- (3) Let $R = k[[f_5, f_6, f_7, f_8]]$, where $f_i \in V$ such that $o(f_i) = i$ for $5 \le \forall i \le 8$. Then $\mathcal{X}_R = \emptyset$.

Thank you very much for your attention.

Introduction Survey on Ulrich ideals Gorenstein case Finite CM-rep. type Non-Gorenstein case Value semigroups References

References

- J. Brennan, J. Herzog and B. Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), 181–203.
- [2] S. GOTO, S. IAI AND K.-I. WATANABE, *Good ideals in Gorenstein local rings*, Trans. Amer. Math. Soc. **353** (2001), 2309–2346.
- [3] S. GOTO, K. OZEKI, R. TAKAHASHI, K.-I. WATANABE AND K.-I. YOSHIDA, Ulrich ideals and modules, Math. Proc. Cambridge Philos. Soc. 156 (2014), 137–166.
- [4] S. GOTO, K. OZEKI, R. TAKAHASHI, K.-I. WATANABE AND K.-I. YOSHIDA, *Ulrich ideals and modules over two-dimensional rational singularities*, Nagoya Math. J. (to appear).
- [5] S. GOTO, R. TAKAHASHI AND N. TANIGUCHI, Almost Gorenstein rings –towards a theory of higher dimension, J. Pure Appl. Algebra 219 (2015), 2666–2712.
- [6] J. HERZOG AND M. KÜHL, Maximal Cohen-Macaulay modules over Gorenstein rings and Bourbaki sequences. Commutative Algebra and Combinatorics, Adv. Stud. Pure Math. 11 (1987), 65–92.
- [7] J. Sally, Cohen-Macaulay local rings of maximal embedding dimension, J. Algebra 56 (1979), 168–183.